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Chapter 4

(3.2) Show that a finite state aperiodic irreducible Markov chain is regular and recurrent.

Solution: Let us proof each case separately

Recurrent: Assuming the chain is finite, at least one state is going to be visited infinitely often starting from that state, since
suppose this is not the case: then every state will be visited finitely many times starting from itself. Pick an arbitrary

state i. Then
∞∑

n=1
P

(n)
i,i < ∞. But if this is the case, then eventually none of the states will be visited. This is a

contradiction because the chain is finite and so it has to go back to one state infinitely often. In other words, if all
states are transient then eventually the chain is in none of the states which is absurd because the chain is finite.
Therefore, at least one state is recurrent and by Corollary 3.1 and the hypothesis that the chain is irreducible, we
can conclude that all states are recurrent, i.e., the chain is recurrent.

Regular: Having showed that the chain is recurrent we can apply Theorem 4.1. In the remark of the theorem we have that:
"If lim

n→∞
P

(n)
i,i > 0 for one i in an aperiodic recurrent class, then πj > 0 for all j in the class of i." Since we have only

one class, then we can conclude that πj > 0 for all states j. By definition, limn→∞ P
(n)
i,j = πj , and thus eventually all

states i, j will be accessible from each other in some number of transitions, i.e., there exists a number Ki,j such that
P

(k)
i,j > 0 for all k > Ki,j (definition of limit). Finally, since we have a finite number of states, choose the maximum

of all the Ki,j such that the previous condition hold, call it L, and we will have that for all states i, j: P (k)
i,j > 0 for

all k > L, i.e., the chain is regular.

(3.3) Recall the first return distribution (Section 3.3)

f
(n)
ii = Pr{X1 6= i,X2 6= i, . . . ,Xn−1 6= i,Xn = i|X0 = i} for n = 1, 2, . . . ,

with f (0)ii = 0 by convention. Using equation (3.2), determine f (n)00 , n = 1, 2, 3, 4, 5, for the Markov chain whose transition
probability matrix is

P =

0 1 2 3
0 0 1

2 0 1
2

1 0 0 1 0
2 0 0 0 1
3 1

2 0 0 1
2

Solution: Equation (3.2) is P (n)
ii =

n∑
k=0

f
(k)
ii P

(n−k)
ii . To use this equation we are going to need up to the 5th power of P00.

A simple calculation shows that: P (1)
00 = 0, P

(2)
00 = 1

4 , P
(3)
00 = 1

8 , P
(4)
00 = 3

8 and P
(5)
00 = 7

32 . Now, let us apply equation
(3.2) in each case n = 1, 2, 3, 4, 5 :

n = 1 : P
(1)
00 =

1∑
k=0

f
(k)
00 P

(1−k)
00

= f
(0)
00 P

(1)
00 + f

(1)
00 P

(0)
00

= f
(1)
00 Since f (0)00 = 0 and P (0)

00 = 1

=⇒ P
(1)
00 = f

(1)
00 = 0 by transition matrix
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n = 2 : P
(2)
00 =

2∑
k=0

f
(k)
00 P

(2−k)
00

= f
(0)
00 P

(2)
00 + f

(1)
00 P

(1)
00 + f

(2)
00 P

(0)
00

= f
(2)
00 Since f (0)00 = f

(1)
00 = 0 and P (0)

00 = 1

=⇒ P
(2)
00 = f

(2)
00 =

1

2
· 1
2
=

1

4
by transition matrix

n = 3 : P
(3)
00 =

3∑
k=0

f
(k)
00 P

(3−k)
00

= f
(0)
00 P

(3)
00 + f

(1)
00 P

(2)
00 + f

(2)
00 P

(1)
00 + f

(3)
00 P

(0)
00

= 1
4P

(1)
00 + f

(3)
00 Since f (0)00 = f

(1)
00 = 0 and P (0)

00 = 1

=⇒ f
(3)
00 = P

(3)
00 − 1

4P
(1)
00 = 1

8 −
1
4 · 0 =

1

8
= f

(3)
00

n = 4 : P
(4)
00 =

4∑
k=0

f
(k)
00 P

(4−k)
00

= f
(0)
00 P

(4)
00 + f

(1)
00 P

(3)
00 + f

(2)
00 P

(2)
00 + f

(3)
00 P

(1)
00 + f

(4)
00 P

(0)
00

= 1
4P

(2)
00 + 1

8P
(1)
00 + f

(4)
00 Since f (0)00 = f

(1)
00 = 0 and P (0)

00 = 1

=⇒ f
(4)
00 = P

(4)
00 − 1

16 = 3
8 −

1
16 =

5

16
= f

(4)
00

n = 5 : P
(5)
00 =

5∑
k=0

f
(k)
00 P

(5−k)
00

= f
(0)
00 P

(5)
00 + f

(1)
00 P

(4)
00 + f

(2)
00 P

(3)
00 + f

(3)
00 P

(2)
00 + f

(4)
00 P

(1)
00 + f

(5)
00 P

(0)
00

= 1
4P

(3)
00 + 1

8P
(2)
00 + 5

16P
(1)
00 + f

(5)
00 Since f (0)00 = f

(1)
00 = 0 and P (0)

00 = 1

=⇒ f
(5)
00 = 7

32 −
1
32 −

1
32 =

5

32
= f

(5)
00

(4.1) Consider the Markov chain on {0, 1} whose transition probability matrix is

P =
0 1

0 1− α α
1 β 1− β

, 0 < α, β < 1.

(a) Verify that (π0, π1) = (β/(α+ β), α/(α+ β)) is a stationary distribution.

Solution: Since this is a regular matrix we can find the limiting distribution using Theorem 1.1. and solving
the linear system:

πP = π, and π0 + π1 = 1, from which we get the equations :

π0(1− α) + π1β = π0 =⇒ π1β = π0α =⇒ π0 =
β

α
π1

π0α+ π1(1− β) = π1 π0α = π1β
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Replacing the last equation into the equation π0+π1 = 1, we get
β

α
π1+π1 = 1 =⇒ π1(

β

α
+1) = 1 =⇒ π1 =

α

α+ β
.

Solving for π0 we get: π0 =
β

α

α

α+ β
=⇒ π0 =

β

α+ β
, thus (π0, π1) = (β/(α+ β), α/(α+ β))

(b) Show that the first return distribution to state 0 is given by f (1)00 = (1− α) and f (n)00 = αβ(1− β)n−2 for n = 2, 3, . . .

Solution: By definition, f (1)00 = Pr{X1 = 0|X0 = 0} = P00 = (1− α). Now, for an arbitrary n ∈ {2, 3, . . .},

f
(n)
00 = Pr{Xn = 0, Xn−1 = 1, . . . X2 = 1, X1 = 1|X0 = 0}, By def. of first return

= Pr{Xn = 0, Xn−1 = 1, . . . X2 = 1, X1 = 1, X0 = 0}, Conditional prob. and Pr{X0 = 0} = 1

= Pr{Xn = 0|Xn−1 = 1, . . . X2 = 1, X1 = 1, X0 = 0}Pr{Xn−1 = 1, . . . X2 = 1, X1 = 1, X0 = 0}, Conditional prob

= Pr{Xn = 0|Xn−1 = 1}Pr{Xn−1 = 1|Xn−2 = 1}Pr{Xn−2 = 1, . . . X2 = 1, X1 = 1, X0 = 0}, Markov property

...

= Pr{Xn = 0|Xn−1 = 1}Pr{Xn−1 = 1|Xn−2 = 1} · · ·Pr{X2 = 1|X1 = 1}Pr{X1 = 1|X0 = 0}, factoring all terms

= P10P11 · · ·P11P01, by definition of transition probabilities

= βPn−2
11 α

= β(1− β)n−2α = αβ(1− β)n−2

This answer makes intuitive sense: the probability of first return to state 0 in n steps beginning at state 0 is the
probability of first going to state 1 and staying in this state for n− 2 transitions and then transitioning from state 1
to state 0. Since this is a Markov chain, this reduces to the product of the corresponding transitions.

(c) Calculate the mean return time m0 =
∞∑

n=1
nf

(n)
00 and verify that π0 = 1/m0

Solution: This is a recurrent, irreducible aperiodic Markov chain. By theorem 4.1 we know:

lim
n→∞

P
(n)
00 =

1
∞∑

n=0
nf

(n)
00

=
1

m0

In part a) we computed lim
n→∞

P
(n)
00 = β/(α+ β), hence,

m0 =
1

π0
=

1

β/(α+ β)
=

α+ β

β

Now, let us compute m0 directly:

m0 =
∞∑

n=1
nf

(n)
00

= (1− α) +
∞∑

n=2
nf

(n)
00 starting sum at n = 1

= (1− α) +
∞∑

n=2
nαβ(1− β)n−2 by part (b)

= (1− α) + αβ
∞∑

n=2
n(1− β)n−2 since αβ is a constant

We know that |(1− β)| < 1, and so we can use the following series expansion to compute the sum
∞∑

n=2
n(1− β)n−2:

1

1− x
=

∞∑
n=0

xn =⇒ differentiate both sides:
1

(1− x)2
=

∞∑
n=0

nxn−1
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Make the change of variable n− 2 = m− 1 =⇒ m = n− 1 for
∞∑

n=2
n(1− β)n−2 =⇒

∞∑
m=1

(m+ 1)(1− β)m−1.

Now we can solve this sum using the series expansion:

∞∑
m=1

(m+ 1)(1− β)m−1 =
∞∑

m=1
m(1− β)m−1 +

∞∑
m=1

(1− β)m−1 separating sum

=
1

(1− (1− β))2
+

1

(1− (1− β))
series expansion and geometric sum

=
1

β2
+

1

β

=
1 + β

β2

Replacing this into our equation for m0 we obtain the desired result:

m0 = (1− α) + αβ

∞∑
n=2

n(1− β)n−2 = 1− α+ αβ

[
1 + β

β2

]
= 1− α+

α+ αβ

β
=
β − αβ + α+ αβ

β
=

α+ β

β
=

1

π0

(4.4) Let {αi : i = 1, 2, . . .} be a probability distribution, and consider the Markov chain whose transition probability matrix is

P =

0 1 2 3 4 · · ·
0 α1 α2 α3 α4 α5 · · ·
1 1 0 0 0 0 · · ·
2 0 1 0 0 0 · · ·
3 0 0 1 0 0 · · ·
4 0 0 0 1 0 · · ·
...

...
...

...
...

...
...

What condition on the probability distribution {αi : i = 1, 2, . . .} is necessary and sufficient in order that a limiting
distribution exist, and what is this limiting distribution? Assume α1 > 0 and α2 > 0, so that the chain is aperiodic.

Solution: Let us try to solve for the limiting distribution πj , i.e., πP = π and
∞∑
i=0

πi = 1:

α1π0 + π1 = π0
α2π0 + π2 = π1
α3π0 + π3 = π2
α4π0 + π4 = π3

...
αiπ0 + πi = πi−1, for i = 1, 2, 3, . . .

Ignoring the first equation and substituting all others into
∞∑
i=0

πi = 1 we get:

π0+π1+π2+π3+· · · = 1 =⇒ π0+(α2π0+π2)+(α3π0+π3)+(α4π0+π4)+· · · = 1 =⇒ π0+α2π0+α3π0+α4π0+π2+π3+π4+· · · = 1

Again, substituting all equations but the first one we get:

π0 + α2π0 + α3π0 + α4π0 + α3π0 + π3 + α4π0 + π4 + α5π0 + π5 + · · · = 1 =⇒

π0 + α2π0 + 2α3π0 + 2α4π0 + α5π0 + π3 + π4 + π5 + · · · = 1

Let us do one more substitution step:

π0 + α2π0 + 2α3π0 + 2α4π0 + α5π0 + α4π0 + π4 + α5π0 + π5 + · · · = 1 =⇒

π0 + α2π0 + 2α3π0 + 3α4π0 + 2α5π0 + π4 + π5 + · · · = 1
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Continuing this process we get:

π0(1 + α2 + 2α3 + 3α4 + 4α5 + · · · ) = 1 ⇐⇒ π0 =
1

1 + α2 + 2α3 + 3α4 + 4α5 + · · ·
⇐⇒ π0 =

1

1 + α2 +
∞∑
i=2

iαi+1

This is a recurrent, irreducible and aperiodic Chain. It is sufficient for it to be positive recurrent for it to have a limiting

distribution. This happens if πj > 0 which in this case means that π0 =
1

1 + α2 +
∞∑
i=2

iαi+1

> 0 ⇐⇒
∞∑
i=2

iαi+1 <∞. Note

that since this is an irreducible Chain and being positive recurrent is a class property, it suffices to check the condition

for π0. Conversely, if
∞∑
i=2

iαi+1 <∞ ⇐⇒ π0 =
1

1 + α2 +
∞∑
i=2

iαi+1

> 0, so the chain is positive recurrent, irreducible, and

aperiodic, so it has a limiting distribution. The necessary and sufficient condition is :

∞∑
i=2

iαi+1 <∞

(4.6) Determine the period of state 0 in the Markov chain whose transition probability matrix is:

P =

3 2 1 0 -1 -2 -3 -4
3 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1

2 0 1
2 0 0 0

-1 0 0 0 0 0 1 0 0
-2 0 0 0 0 0 0 1 0
-3 0 0 0 0 0 0 0 1
-4 0 0 0 1 0 0 0 0

Solution: By definition the period of state 0 is: d(0) = gcd{n ≥ 1;P
(n)
00 > 0}. From the transition matrix we see

that the following transitions are possible: 0 → 1 → 2 → 3 → 0. Therefore, P (4)
00 > 0. Another possibility is 0 → −1 →

−2 → −3 → −4 → 0, which means that P (5)
00 > 0. Hence, d(0) = gcd{n ≥ 1;P

(n)
00 > 0} = {4, 5, . . .} = 1 = d(0) since 4

and 5 are relatively prime. Note that this is an irreducible matrix and thus, all states have the same period.

(4.7) An individual either drives his car or walks in going from his home to his office in the morning, and from his office to his
home in the afternoon. He uses the following strategy: If it is raining in the morning, then he drives the car, provided it
is at home to be taken. Similarly, if it is raining in the afternoon and his car is at the office, then he drives the car home.
He walks on any morning or afternoon that it is not raining or the car is not where he is. Assume that, independent of the
past, it rains during successive mornings and afternoons with constant probability p. In the long run, on what fraction of
days does our man walk in the rain? What if he owns two cars?

Solution: We can model this situation with a two state Markov chain with states C = the car is where the man is
and NC = the car is not where the man is. The transition probability matrix is given by:

P =
C NC

C p 1− p
NC 1 0

If it rains then the man takes his car. This happens with probability p. If it doesn’t rain, then the man will walk and
leave the car behind. This happens with probability 1− p. Now, the fraction of days he walks in the rain is given by the
event that he doesn’t have the car and it rains OR he has the car and it doesn’t rain but then it rains on the way back.
The fraction of time he has or doesn’t have the car is giving by the limiting distribution of the Markov chain (assuming
p > 0, this is a regular matrix so we can use theorem 1.1):

πP = π, and πC + πNC = 1, from which we get the equations:

pπC + πNC = πC
(1− p)πC = πNC
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Substituting the last equation into πC + πNC = 1 we get πC + (1 − p)πC = 1 =⇒ πC(1 + 1 − p) = 1 =⇒ πC =
1

2− p
.

This is the fraction of time the car is where he is. Note that this equation makes sense: if p = 1 the πC = 1, he always
has the car with him (he always need it because it is always raining). If p = 0 then πC = 1/2, the car is always at home

and he moves equally between home and work. From this we can compute πNC = (1− p)πC =⇒ πNC =
1− p
2− p

. Now we

can compute the fraction we are interested in:

Fraction walk in the rain = Pr{doesn’t have car and rains OR has car and it doesn’t rain but then it rains on the way back}
= πNCPr{Rains}+ πCPr{Doesn’t rain}Pr{Rains}
= πNC · p+ πC · (1− p) · p
=

1− p
2− p

· p+ 1

2− p
· (1− p) · p

=
2(1− p)p
2− p

The fraction of days he walks in the rain correspond to the cases where it rains and he doesn’t have the car. In a given
day this could happen in two ways: either he doesn’t have the car in the morning and it rains or, he has the car in the
morning and it doesn’t rain, but it rains on the way back.

Now, let us consider the case where there are 2 cars. We can model this situation with a three state Markov chain
with states 0, 1 and 2, where each state represents the number of cars that are where the man is. The transition proba-
bility matrix is given by:

P =

0 1 2
0 0 0 1
1 0 1− p p
2 1− p p 0

If there are no cars where he is, then the two cars are at the other location. If there are two cars where he is then he might
take one car, provided it rains, and there will be two cars in one location. If it doesn’t rain, then there will be one car in each
location. Finally, if there is only one car where he is, then the other car is at the other location and will remain this way pro-
vided it doesn’t rain. If it rains, then he will take one of the cars to the other location and both cars will be in one location.

Just like before, assuming p > 0, we can compute the limiting distribution:

πP = π, and π0 + π1 + π2 = 1, from which we get the equations:

(1− p)π2 = π0
(1− p)π1 + pπ2 = π1
π0 + pπ1 = π2

Substitute the second into the third eq.: (1−p)π2+pπ1 = π2 =⇒ pπ1 = π2+(p−1)π2 = π2(p−1+1) = pπ2 =⇒ π1 = π2

Substitute this into third equation: π0 + pπ2 = π2 =⇒ π0 = (1− p)π2

Substitue boxed equations into: π0+π1+π2 = 1 =⇒ (1−p)π2+π2+π2 = 1 =⇒ π2(1−p+1+1) = 1 =⇒ π2 = π1 =
1

3− p

Thus, π0 =
1− p
3− p

. Like before, the fraction of time he is where there are no cars is π0. Likewise, the fraction of time he

is where there are 1 or 2 cars is π1, which is the same as π2. Now we can compute the fraction we are interested in:

Fraction walk in the rain = Pr{no cars where he is and rains OR 2 cars where he is and doesn’t rain but rains on way back}
= π0Pr{Rains}+ π2Pr{Doesn’t rain}Pr{Rains}
= π0 · p+ π2 · (1− p) · p

=
1− p
3− p

· p+ 1

3− p
· (1− p) · p

=
2(1− p)p
3− p
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